期刊专题

10.7641/CTA.2019.90040

基于高斯混合模型最大期望聚类的同时定位与地图构建数据关联

引用
数据关联是移动机器人同时定位与地图构建(SLAM)中状态估计的前提和基础,针对当前联合兼容分支定界算法存在计算复杂度高、耗时长的问题,提出了基于高斯混合模型(GMM)最大期望聚类分组的SLAM数据关联算法.首先,为减少同一时刻参与关联的观测值数目,在局部区域内采用GMM最大期望聚类算法对当前时刻的观测值进行分组;其次,在各观测小组中采用联合兼容分支定界算法进行数据关联;最后,综合各观测小组的观测值同局部地图特征得到的关联解,得到最优的关联结果.仿真实验结果表明,基于高斯混合模型最大期望聚类分组的SLAM数据关联算法在保证数据关联准确度的前提下,计算复杂度得到了降低,缩短了运行时间.

同时定位与地图构建、数据关联、联合兼容分支定界、高斯混合模型、最大期望聚类、移动机器人

37

国家自然科学基金项目;北京市教育委员会科技计划重点项目;北京市自然科学基金项目

2020-07-07(万方平台首次上网日期,不代表论文的发表时间)

共10页

265-274

暂无封面信息
查看本期封面目录

控制理论与应用

1000-8152

44-1240/TP

37

2020,37(2)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn