基于聚类和支持向量机的胃癌患者住院费用建模
针对胃癌患者住院费用分类标签设定的复杂性以及传统费用建模算法的局限性,本文提出了一种基于聚类和支持向量机的住院费用建模算法,为胃癌患者住院费用的控制和预测提供方法基础.搜集整理宁夏某三甲医院2009–2011年间1583例胃癌患者为样本,采用K-means对总住院费用逐年聚类得到分类标签,最后通过支持向量机对住院费用进行建模预测以及影响因素分析,用分类准确率作为预测效果的评价指标.实验结果表明胃癌患者住院费用呈逐年增加趋势,其中以西药费为主,占总费用的53.74%.通过K-Means以年份对费用聚类比单纯以费用分布特征聚类的分类准确率提高了13.13%,当核函数选用高斯核函数,且惩罚因子C=10和核参数γ=1时建立的支持向量机模型最稳定,分类准确率为92.11%.实验结果表明根据年份聚类得到类别标签更合理,结合聚类的SVM来预测住院费用更有效.
胃癌、住院费用、支持向量机、聚类、分类标签
34
TP242(自动化技术及设备)
National Natural Science Foundation of China61561040;Natural Science Foundation of NingxiaNZ16067;Natural Science Foundation of Ningxia Education DepartmentNGY2016084
2017-10-10(万方平台首次上网日期,不代表论文的发表时间)
共8页
803-810