期刊专题

10.7641/CTA.2015.50211

高斯渐进贝叶斯滤波器

引用
渐进贝叶斯方法将先验分布到后验分布的演化描述为一阶动态系统,通过在伪时间上连续地引入观测信息实现后验状态估计.该方法的一般形式解,即动态系统的时间导数,是难以得到的.本文提出一种高斯型渐进贝叶斯滤波器.首先在线性高斯条件下推导了时间导数的解析解;然后证明了在该条件下,由该解析解确定的一阶动态系统与常量状态估计的Kalman-Bucy滤波器是一致的,且由此导出的高斯渐进贝叶斯滤波器与卡尔曼滤波器是一致的.最后利用一阶Taylor展开推导了滤波器在非线性高斯条件下的近似解表达式,并采用Monte Carlo方法给出了具体实现方法.通过若干仿真算例表明,新滤波器具有较高的精度,且在一定精度条件下的时间复杂度低于一般粒子滤波器.

非线性滤波、渐进贝叶斯、卡尔曼滤波器、一阶动态系统、Monte Carlo方法

32

TP202(自动化技术及设备)

国防预研基金项目51401020503资助.Supported by National Defense Pre-research Foundation 51401020503

2015-10-29(万方平台首次上网日期,不代表论文的发表时间)

共9页

1023-1031

暂无封面信息
查看本期封面目录

控制理论与应用

1000-8152

44-1240/TP

32

2015,32(8)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn