期刊专题

10.7641/CTA.2015.40367

采用资格迹的神经网络学习控制算法

引用
强化学习是解决自适应问题的重要方法,被广泛地应用于连续状态下的学习控制,然而存在效率不高和收敛速度较慢的问题.在运用反向传播(back propagation,BP)神经网络基础上,结合资格迹方法提出一种算法,实现了强化学习过程的多步更新.解决了输出层的局部梯度向隐层节点的反向传播问题,从而实现了神经网络隐层权值的快速更新,并提供一个算法描述.提出了一种改进的残差法,在神经网络的训练过程中将各层权值进行线性优化加权,既获得了梯度下降法的学习速度又获得了残差梯度法的收敛性能,将其应用于神经网络隐层的权值更新,改善了值函数的收敛性能.通过一个倒立摆平衡系统仿真实验,对算法进行了验证和分析.结果显示,经过较短时间的学习,本方法能成功地控制倒立摆,显著提高了学习效率.

强化学习、神经网络、资格迹、倒立摆、梯度下降

32

TP301(计算技术、计算机技术)

国家自然科学基金项目61403205,61373027,60117089;曲阜师范大学实验室开放基金项目sk201415资助.Supported by National Natural Science Foundation of China61403205,61373027,60117089;Laboratory Open Foundation of Qufu Normal Universitysk201415

2015-10-08(万方平台首次上网日期,不代表论文的发表时间)

共8页

887-894

暂无封面信息
查看本期封面目录

控制理论与应用

1000-8152

44-1240/TP

32

2015,32(7)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn