期刊专题

10.7641/CTA.2015.40398

基于主成分分析-改进的极限学习机方法的精对苯二甲酸醋酸含量软测量

引用
目前,化工生产过程日益复杂,生产操作变量越来越多,由于客观条件的限制,有些重要的过程参数无法通过直接测量的手段精确测得.通过软测量可实现复杂化工生产过程重要参数的精确测量,进而指导化工企业的生产,提高化工生产的产出效率,是解决问题的一个有效的方法.针对复杂化工过程软测量建模中存在的问题,本文提出了一种改进的极限学习机模型(improved extreme learning machine,IELM).一方面将主成分分析(principalcomponent analysis,PCA)方法应用到极限学习机(ELM)里,通过PCA对模型输入变量进行主成分分析,不仅去除了变量间的线性相关关系,而且对高数据进行降维处理,最终降低了极限学习机的输入复杂性;另一方面利用相关系数判断输入主元数据与输出数据间的相关关系,从而得到正相关输入和负相关输入,依据这两类数据构造ELM模型,使得每类输入数据对网络的输出有同样的作用,进一步提高极限学习机的泛化能力.最后建立了PCA-IELM模型,首先用标准数据库的Triazines数据集验证该模型有效性,随后得出了基于PCA-IELM方法的精对苯二甲酸(purified terephthalic acid,PTA)溶剂脱水塔塔顶醋酸含量软测量模型,仿真结果表明PCA-IELM模型处理高维数据时较传统的ELM算法具有稳定性好,建模精度高等特点,为神经网络在复杂化工应用领域提供新思路.

极限学习机、主成分分析、精对苯二甲酸、软测量

32

TP273(自动化技术及设备)

国家自然科学基金项目61074153,61473026资助.Supported by National Natural Science Foundation of China 61074153,61473026

2015-04-02(万方平台首次上网日期,不代表论文的发表时间)

共6页

80-85

暂无封面信息
查看本期封面目录

控制理论与应用

1000-8152

44-1240/TP

32

2015,32(1)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn