期刊专题

移动机器人路径规划强化学习的初始化

引用
针对现有机器人路径规划强化学习算法收敛速度慢的问题,提出了一种基于人工势能场的移动机器人强化学习初始化方法.将机器人工作环境虚拟化为一个人工势能场,利用先验知识确定场中每点的势能值,它代表最优策略可获得的最大累积回报.例如障碍物区域势能值为零,目标点的势能值为全局最大.然后定义Q初始值为当前点的立即回报加上后继点的最大折算累积回报.改进算法通过Q值初始化,使得学习过程收敛速度更快,收敛过程更稳定.最后利用机器人在栅格地图中的路径对所提出的改进算法进行验证,结果表明该方法提高了初始阶段的学习效率,改善了算法性能.

移动机器人、强化学习、人工势能场、路径规划、Q值初始化

29

TP242(自动化技术及设备)

国家自然科学基金资助项目61075091,61174054;国家自然科学基金青年基金资助项目61105100

2013-03-13(万方平台首次上网日期,不代表论文的发表时间)

共6页

1623-1628

暂无封面信息
查看本期封面目录

控制理论与应用

1000-8152

44-1240/TP

29

2012,29(12)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn