基于进化信度规则库的故障预测
在假设信度规则库(BRB)的输入为均匀分布的情况下,已有文献提出了一种序贯自适应的学习算法以实现BRB的参数在线辨识和结构的自适应调整.然而在实际问题中,信度规则库的输入一般是未知的、难以得到的,这在一定程度上限制了序贯自适应学习算法的实用性,因此就需要研究一种改进的BRB学习算法以实现参数和结构的同时辨识.本文在序贯自适应方法的基础上,通过定义BRB的完整性准则,提出了改进的BRB进化策略.与现有方法相比,该方法可以实现信度规则的自动增减,且无需输入样本的概率密度函数.此外,该方法继承了BRB的特点,仅需要部分的输入输出信息.基于改进的进化策略,提出了一种新的故障预测算法,最后通过陀螺仪故障预测实验验证了本文方法的有效性.
专家系统、信度规则库、证据推理、故障预测
29
TP206+.3(自动化技术及设备)
the National Nature Science Foundation of China61025014,61174030,61104223;the Shandong High School Science & Technology Fund Planning ProjectJ09LG26
2013-03-13(万方平台首次上网日期,不代表论文的发表时间)
共8页
1579-1586