结合非线性频谱与核主元分析的复杂系统故障诊断方法
传统非线性频谱分析方法对复杂系统进行故障诊断时,求解出的非线性频谱数据量庞大,不便于直接用于故障检测与分类识别.本文提出了一种非线性频谱特征与核主元分析(KPCA)结合的故障诊断方法,首先通过最小二乘算法估计出前3阶Volterra时域核,由多维傅立叶变换求取出广义频率响应函数,然后利用KPCA方法对谱数据进行压缩与提取谱特征,最后利用多分类最小二乘支持向量机进行多故障检测与识别.考虑到频谱数据具有非线性的特点,KPCA中的核函数选用由多项式函数与径向基函数构成的混合核函数,兼顾了局部特性与全局特性.论文基于非线性频谱数据,给出了核主元模型建立与在线故障诊断的具体算法.对非线性模拟电路和数控机床伺服传动系统进行了仿真实验,结果表明本文方法能够大幅度降低频谱数据维数,故障识别率高,是一种实用的故障诊断方法.
复杂系统、非线性频谱特征、核主元分析、混合核函数、故障诊断
29
TP277(自动化技术及设备)
国家"863"计划资助项目2006AA01Z126
2013-03-13(万方平台首次上网日期,不代表论文的发表时间)
共7页
1558-1564