期刊专题

基于粗糙集与支持向量机的企业短期贷款违约判别

引用
建立了粗糙集和支持向量机集成的企业贷款违约判别模型,该模型首先利用自组织映射 (SOM)神经网络对具有连续属性值的财务数据进行离散处理,并应用遗传算法约简评价指标,然后将约简得到的最小条件属性集及相应的原始数据送入支持向量机进行训练,最后对企业短期贷款检验样本进行违约判别.采用贷款企业数据库558家制造业样本企业和522家房地产业样本企业进行交叉验证的实证研究,结果表明,与BP神经网络、多元判别分析、Logistic等违约判别模型相比,粗糙集和支持向量机集成的违约判别模型有更好的预测效果.

粗糙集、支持向量机、神经网络、违约判别

26

TP273(自动化技术及设备)

国家教育部人文社会科学研究项目08JC790096;浙江省高校人文社会科学浙江工商大学金融学重点研究基地项目

2010-03-29(万方平台首次上网日期,不代表论文的发表时间)

共6页

1365-1370

暂无封面信息
查看本期封面目录

控制理论与应用

1000-8152

44-1240/TP

26

2009,26(12)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn