期刊专题

基于SSD-LeNet的矿井移动目标检测与识别方法

引用
针对井下雾尘、低照度环境中矿井移动目标检测与识别存在检测精度低、实时性差等问题,提出了一种基于SSD-LeNet的矿井移动目标检测与识别方法.利用视觉传感器捕获矿井移动目标原始图像的一帧来构建模型输入,据此制作含有数字序列位置信息的数据集;离线训练的单镜头多盒检测器(Single Shot multibox Detector,SSD)模型可以输出与自身位置对应的目标特征类别,并利用该训练好的SSD学习模型对测试集中移动目标图片上的数字序列位置进行检测;根据数字序列位置对应的矩形区域进行字符分割操作,将分割后的单个字符依次放入LeNet网络中进行特征识别;识别出的单个字符按顺序合成数字序列快速检索出移动目标的身份信息.研究表明,本文方法与其他深度学习目标检测与识别方法相比,对矿井低照度及噪声环境下的目标检测与识别具有较高的准确率和较强鲁棒性,能够满足实时性要求.

矿井、深度学习、SSD模型、深度卷积神经网络、智能检测与识别

6

TP183(自动化基础理论)

国家重点研发计划;中央高校基本科研业务费专项资金

2021-03-26(万方平台首次上网日期,不代表论文的发表时间)

共9页

100-108

相关文献
评论
暂无封面信息
查看本期封面目录

矿业科学学报

2096-2193

10-1417/TD

6

2021,6(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn