期刊专题

10.3969/j.issn.1671-1815.2023.25.028

基于深度学习的城市区域短时交通拥堵预测算法

引用
城市的交通拥堵已经成为各个城市中的普遍现象,严重影响了城市日常交通以及人们的出行.针对城市区域交通流的研究与分析,为了准确地对城市交通状态进行预测,通过网格划分的方法,把城市区域划分为多个区域,根据城市交通数据流的时空特征,提出了一种基于深度学习的城市交通拥堵预测模型(CS-Transformer).该模型通过使用卷积神经网络(con-volutional neural networks,CNN)提取基于网格划分的城市区域交通数据的空间特征,然后采用全连接神经网络增强模型的表达能力,再通过相似性位置编码机制(similarity location encoding mechanism,SPEM)把位置信息加入交通数据中,最后运用Transformer网络捕捉交通数据的时间依赖特征.用成都市出租车全球定位系统(global positioning system,GPS)数据对模型进行验证,结果表明该模型预测结果优于CNN、Transformer和CNN-Transformer等模型,以均方误差(mean square error,MSE)为评价指标,将测试集中交通路网的平均预测精度分别提高了19.6%、26.3%和10%.

交通拥堵预测、CNN、相似性位置编码机制(SPEM)、Transformer

23

TP301.6(计算技术、计算机技术)

四川省科技创新基地平台和人才计划;四川省科技计划软科学项目;宜宾市双城市校协议专项科研经费科技项目

2023-10-11(万方平台首次上网日期,不代表论文的发表时间)

共13页

10866-10878

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

23

2023,23(25)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn