期刊专题

10.3969/j.issn.1671-1815.2023.23.032

基于熵值法改进Stacking的文本情感分析

引用
在情感分析研究中,使用Stacking算法进行情感分析时基学习器的选择是至关重要的.传统的Stacking算法仅仅只是将不同学习器结合起来,没有区分它们之间的不同,同时也不能反映初级学习器的实际预测情况,针对此问题,基于熵值法改进Stacking算法进行文本的情感分类.首先,使用熵值法确定单一分类器的性能指标权重,将指标值的权重进行加权求和获得不同模型的综合得分,通过综合得分来选择性能最好的基学习器组合;接着,由于基模型中的各个分类器性能的不同,将基学习器训练后的预测结果赋予不同的权重,输入到次级学习器当中;最后再利用次级学习器进行训练并预测情感倾向.实验结果表明,基于熵值法改进Stacking模型优于传统的Stacking模型,说明基学习器的选择和重要程度对情感分类具有一定帮助,为之后文本情感分析奠定一定的基础.

情感分析、熵值法、基分类器选择、改进Stacking

23

TP391.1(计算技术、计算机技术)

国家自然科学基金;国家重点研发计划

2023-10-08(万方平台首次上网日期,不代表论文的发表时间)

共7页

10008-10014

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

23

2023,23(23)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn