期刊专题

10.3969/j.issn.1671-1815.2023.09.047

基于人工蜂群优化支持向量机回归的隧道塌方风险预测

引用
为预测隧道塌方风险等级,减少隧道塌方引起的灾害事故,建立基于人工蜂群(artificial bee colony,ABC)优化支持向量机回归(support vector machine regression,SVR)隧道塌方风险预测模型.首先,从工程地质、水文气象、设计因素、施工因素4个方面综合考虑,遴选13个主要影响因素,建立隧道塌方风险指标体系;其次,引入人工蜂群算法优化SVR的核参数C和惩罚参数g,解决传统SVR稳定性低的缺陷,提高模型的精确度,为验证模型性能采用相关系数(R2)、均方误差(mean squared error,MSE)、均方根误差(root mean squared error,RMSE)评价参数对比分析;最后,以新疆北部某供水工程为研究对象,对隧道塌方风险测试样本进行预测,分别将ABC-SVR、PSO-SVR、GA-SVR及SVR模型对比分析.研究结果表明:ABC-SVR预测结果为100%,PSO-SVR预测结果为83.3%,GA-SVR和SVR均为66.67%,ABC-SVR的预测结果与实际工程结果一致性更高,可为隧道塌方风险评估提供科学的决策依据.

隧道塌方、人工蜂群算法、支持向量机回归、相关系数、均方误差、均方根误差

23

X913(安全科学基础理论)

国家自然科学基金51668037

2023-05-11(万方平台首次上网日期,不代表论文的发表时间)

共7页

3997-4003

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

23

2023,23(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn