期刊专题

10.3969/j.issn.1671-1815.2023.08.029

人体检测与异常行为识别联合算法

引用
近年来,异常行为识别算法取得了一定的研究进展,但是针对复杂环境、人体遮挡、动作相似度高等多种挑战,识别算法的适应性、效率、准确性都有待进一步提高.为了解决以上问题,提出了基于特征增强的人体检测与异常行为识别联合算法,首先将视频序列分别送入人体检测网络和特征加强网络,再采用爱因斯坦求和法将特征加强网络输出的多头卷积注意力特征与人体检测网络输出的热力图特征融合,得到加强融合特征,然后利用检测网络输出的人体目标位置特征信息和ROI Align模块对加强融合特征进行人体ROI(region of interest)区域特征截取,得到人体ROI区域加强融合特征,最后将人体ROI区域加强融合特征送入Transformer时序建模网络模块进行人体行为特征时序建模和识别.所提算法充分利用检测网络中间过程产生的行为主体区域特征,弱化了复杂环境中背景的干扰,同时实现了检测网络的输出特征共享,避免了识别网络的二次特征提取过程,从而提高了网络运行效率,且利用Transformer网络的建模优势,能够充分挖掘人体行为空间特征、时序特征以及之间的跨域特征的优势.实验结果表明:所提算法在提高了网络效率的同时大幅度地提升了网络的识别准确率,达到了预期效果.

人体检测网络、异常行为识别、ROI Align、人体ROI区域、Transformer

23

TP391.41(计算技术、计算机技术)

国家自然科学基金61906125

2023-05-11(万方平台首次上网日期,不代表论文的发表时间)

共9页

3370-3378

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

23

2023,23(8)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn