期刊专题

10.3969/j.issn.1671-1815.2023.04.023

基于Hadoop分布式计算的混合神经网络负荷分类模型

引用
为了对电力物联网背景下的海量负荷数据进行精细化分析,从中提取用电模式,提出一种基于Hadoop分布式并行计算的混合神经网络分类模型.首先,基于时间维度的一维卷积神经网络(one-dimensional convolutional neural network,1DCNN)搭建"负荷特征提取器";其次,使用长短期记忆网络(long-short-term memory network,LSTM)搭建"序列分类器";最后,将该"混合神经网络分类方法"在Hadoop平台上搭建,实现算法的并行化运行,以适用于海量负荷曲线的高效辨识.使用标准时序数据与真实负荷数据测试该方法的分类性能,算例结果表明:所提分类方法具有较高的分类精度,经并行化处理后有效提高了负荷数据的处理效率.

负荷分类、卷积神经网络(CNN)、长短期记忆网络(LSTM)、Hadoop平台、混合神经网络

23

TM714(输配电工程、电力网及电力系统)

中国民用航空飞行学院青年基金项目XJ2020004401

2023-03-24(万方平台首次上网日期,不代表论文的发表时间)

共8页

1549-1556

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

23

2023,23(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn