期刊专题

10.3969/j.issn.1671-1815.2023.04.015

基于XGBoost模型的安徽省土壤pH空间建模

引用
土壤pH是土壤的基本属性之一,对土壤环境管理有重要作用.以安徽省为研究区域,选用气候、地形、生物等17个相关环境变量,利用XGBoost和随机森林(random forest,RF)模型建立安徽省土壤pH空间预测模型,对比两模型的预测精度,并估算了两种制图结果的不确定性.结果表明:与随机森林模型相比,XGBoost模型对安徽省土壤pH的预测精度更高.XGBoost模型中eta、max_depth和nrounds对于模型的精度均具有一定的影响,eta的变化对于XGBoost模型精度影响最大.年均降水量(mean annual precipitation,MAP)、纬度(latitude,记为Y)、多尺度谷底平坦度(multiresolution index of valley bottom flatness,MRVBF)、年均温(mean annual temperature,MAT)、多尺度脊顶平坦度(multiresolution index of the ridge top flatness,MRRTF)、增强植被指数(enhanced vegetation index,EVI)对土壤pH建模有较大的影响,在两种模型的变量重要性排序中均重要.空间制图结果表明:两模型的预测结果大体趋势相同,安徽省土壤pH呈"南酸北碱"的趋势,但两者在部分地区的结果仍有区别.

XGBoost、土壤pH、随机森林(RF)、安徽省

23

S153.4(土壤学)

安徽省自然科学基金;国家自然科学基金;安徽省高校自然科学研究项目;安徽理工大学人才引进项目

2023-03-24(万方平台首次上网日期,不代表论文的发表时间)

共9页

1472-1480

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

23

2023,23(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn