期刊专题

10.3969/j.issn.1671-1815.2023.03.044

基于SSA-BP极端高温天气驾驶疲劳的检测

引用
疲劳驾驶是引起道路交通事故的主要因素之一,提高驾驶疲劳检测精度是预防交通事故的有效措施.为研究驾驶员在极端高温天气下驾驶过程中疲劳程度情况,基于生理反馈仪和卡罗林斯卡嗜睡表(Karolinska sleepiness scale,KSS)主观疲劳调查方法,采集了本地和外地两类驾驶员在正常天气(35℃以下)、高温天气(35~39℃)及极端高温天气(40℃及以上)等3种气温环境下主观疲劳值和生理指标(心电信号与表皮温度).通过应用皮尔逊相关性分析方法、非参数检验(曼-惠特尼U检验)及配对检验针对各项生理指标进行特征分析.结果表明,在极端高温天气下2类驾驶员主观疲劳值与各项生理指标之间存在相关性;两类驾驶员主观疲劳值和各项生理指标在3种天气下变化存在显著差异;相比于本地驾驶员,在极端天气下外地驾驶员疲劳程度的增加较快.在此基础上,选用麻雀搜索算法(sparrow search algorithm,SSA)优化了BP(back propa-gation)神经网络预测模型,建立基于SSA-BP驾驶疲劳检测模型,对样本数据进行预测与分类,验证了该模型的有效性.结果表明,标准BP神经网络和SSA-BP疲劳检测精度分别为88.5%、95%,建立的SSA-BP驾驶疲劳检测模型预测效果良好,可为极端高温道路交通安全提供参考与借鉴.

极端高温天气、麻雀搜索算法(SSA)、BP神经网络、驾驶疲劳检测

23

U419.91(道路工程)

国家自然科学基金;新疆维吾尔自治区研究生科研创新项目

2023-03-23(万方平台首次上网日期,不代表论文的发表时间)

共8页

1254-1261

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

23

2023,23(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn