期刊专题

10.3969/j.issn.1671-1815.2023.01.049

基于两级信息融合的隧道掘进机拆装装置作业安全预警模型

引用
为了能对隧道掘进机(tunnel boring machine,TBM)拆装装置作业时的安全做出有效预警,通过研究两级信息融合建立最优的安全预警模型,为TBM拆装装置吊装作业提供安全保障.一级融合将数据通过层次分析法-熵权法算法融合得出安全状态系数;二级融合建立灰色模型(grey model,GM)、差分自回归移动平均(autoregressive integrated moving average model,ARIMA)、长短期记忆网络(long short-term memory,LSTM)模型,通过3个单项预测模型构建4个简单平均组合模型和4个最优加权组合模型,对拆装装置作业时的安全状态系数进行预测分析,通过相关系数R、平均绝对误差(mean absolute error,MAE)、平均相对误差(mean absolute percentage error,MAPE)、均方根误差(root mean square error,RMSE)4个评价指标以及后期预测数据的相对误差对预测模型精度进行比较,选出最优组合模型.结果表明:最优加权组合模型的评价指标、后期数据相对误差、模型拟合效果明显优于单项与简单平均模型;通过两级信息融合,构建了权重为(0.21,0.10,0.69)的TBM拆装装置作业时的最优加权组合预警模型GM-ARIMA-LSTM.可见创建的二级信息融合安全预警模型在TBM拆装装置作业时能有效判断装置的安全状态,对危险做出及时预警.

安全预警模型、两级信息融合、安全状态系数、最优加权组合模型

23

X943

郑州市重大科技创新专项;河南省专业学位研究生精品教学案例项目

2023-02-20(万方平台首次上网日期,不代表论文的发表时间)

共7页

422-428

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

23

2023,23(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn