期刊专题

10.3969/j.issn.1671-1815.2022.36.038

施工组织设计文档智慧辅助审查中的文本分类问题研究

引用
施工组织设计是指导工程建设全过程活动的技术、经济和组织的综合性文件,随着自然语言处理(natural language processing,NLP)等人工智能技术的发展,针对施工组织设计文档智慧辅助审查中基础性工作:文本分类问题开展研究.为实现施工组织设计文本的自动分类,运用Word2vec词嵌入技术对文本进行向量化表示,基于双向长短时记忆网络(bi-directional long short-term memory,Bi-LSTM)捕捉文本上下文序列信息,融入Attention机制,提取文本有效信息,采用softmax激活函数分类.结果表明:Attention Bi-LSTM在房建数据集上达到0.97的准确率、召回率以及F值,整体分类效果在正确率、宏平均、加权平均上均优于其他模型.融入Attention机制的Bi-LSTM文本分类模型通过双向捕获文本的特征并利用Attention机制提取有效信息,达到了联合优化的作用,提高了模型的分类性能.

施工组织设计、文本分类、审查、Word2vec、Attention双向长短时记忆网络(Bi-LSTM)

22

TU721+.2(建筑施工)

2023-02-20(万方平台首次上网日期,不代表论文的发表时间)

共9页

16180-16188

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

22

2022,22(36)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn