期刊专题

10.3969/j.issn.1671-1815.2022.35.033

基于关联规则及组合模型的面料需求预测

引用
由于服装的面料组成具有复杂性,企业在不同时间对不同规格型号面料需求量不一致,传统的人工预测及单维度智能预测模型难以解决问题.针对服装企业面料需求非确定性、预测难的痛点,提出基于关联规则及组合模型的面料需求预测方法.首先构建Apriori面料型号关联模型,挖掘多批多类面料间的型号关联规则;然后构建Prophet时间序列模型与长短期记忆神经网络(long short-term memory,LSTM)的组合预测模型Prophet-LSTM,结合其在解决面料需求预测问题上的优势;最后将挖掘出的高关联面料型号历史需求数据作为输入,采用量子粒子群算法(quantum particle swarm optimization,QPSO)优化组合模型权值系数,进行关联面料需求量预测.使用均方根误差(root mean squared error,RMSE)及平均绝对误差(mean abso-lute error,MAE)作为评价指标设计对比实验,实验结果表明:采用量子粒子群优化的QPSOProphet-LSTM面料需求预测模型RMSE较Prophet降低5.464,较LSTM降低1.184;MAE较Prophet降低4.261,较LSTM降低0.819,需求预测精度更高,支持服装企业面料柔性生产.

需求预测、Apriori、关联分析、Prophet、LSTM、量子粒子群算法

22

TP391(计算技术、计算机技术)

国家重点研发计划;湖南省重点领域研发计划;湖南省重点领域研发计划;湖南省研究生科研创新项目

2023-02-20(万方平台首次上网日期,不代表论文的发表时间)

共11页

15697-15707

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

22

2022,22(35)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn