期刊专题

10.3969/j.issn.1671-1815.2022.32.029

基于GraphSage节点度重要性聚合的网络节点分类研究

引用
传统的图嵌入算法及图神经网络模型在对网络节点分类时仅使用了节点本身的属性信息或者特征信息,很少使用节点在网络中的结构信息.如何在图神经网络聚合时引入节点网络结构信息来提升分类准确性也是一个值得深入研究的问题.因此,在GraphSage模型的基础上,根据网络中节点度及节点重要性设计了新的聚合函数并提出了GraphSage-Degree模型.首先,模型根据节点度获得节点在邻域中的重要性,然后再以重要性为依据来聚合节点的特征,使得网络中重要的节点能够尽可能的聚合更多的特征信息,并且在GraphSage-Degree中设置了一个与节点度有关的超参数D,能够通过调节该参数D使得在不同的数据集上达到最佳分类状态.在Cora、Citeseer和Pubmed 3个公开数据集上进行了测试,GraphSage-Degree与其他方法相比,macro-F1的平均提升值分别为8.72%、10.37%和8.29%,在Pubmed上有最大提升值38.84%;micro-F1的平均提升值分别为8.97%、11.16%和6.9%,在Pubmed上有最大提升值38.39%.

图神经网络、GraphSage、节点度、节点分类

22

TP391(计算技术、计算机技术)

国家重点研发计划;国家级大学生创新创业训练计划项目

2023-04-13(万方平台首次上网日期,不代表论文的发表时间)

共7页

14306-14312

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

22

2022,22(32)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn