期刊专题

10.3969/j.issn.1671-1815.2022.30.027

改进的灰狼算法在电动汽车充电调度中的应用

引用
针对灰狼优化算法(grey wolf opotimizer,GWO)易早熟收敛和陷入局部最优的缺点,提出一种基于精英反向学习的改进灰狼算法(grey wolf optimizer based on particle swarm optimizer,PSO-GWO).首先,利用精英反向学习机制初始化种群,使种群保持多样性;然后提出一种非线性控制因子策略,增加算法的搜索能力,提高算法的收敛速度;最后基于差分进化和粒子群思想更新了位置方程,从而提升算法的收敛性能.采取10个基准测试函数将本文提出的改进算法与差分进化算法、粒子群算法、传统灰狼算法、其他学者提出的改进灰狼优化算法进行对比.实验结果表明,本文提出的算法与其他算法相比,在求解多峰函数问题上效果显著,可以搜索到最优解0,同时求解最优非0解函数的效果也体现地较优越;同时运用改进的算法在实际电动汽车充电调度上进行了对比分析,发现也取得了不错的效果.

灰狼算法、精英反向学习、非线性因子、粒子群思想、充电调度

22

TP301.6(计算技术、计算机技术)

江西省教育厅立项课题GJJ150678

2022-12-23(万方平台首次上网日期,不代表论文的发表时间)

共8页

13355-13362

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

22

2022,22(30)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn