期刊专题

10.3969/j.issn.1671-1815.2022.27.034

改进的YOLOv3交通标志识别算法

引用
针对复杂场景下交通标志检测存在精度低、检测速度慢等问题,提出一种基于YOLOv3改进的S-YOLO(stronger-YOLO)交通标志算法.首先,合并批归一化层到卷积层,以提升模型前向推理速度;其次,采用二分K-means聚类算法,确定适合交通标志的先验框;然后引入空间金字塔池化模块,提取特征图深度特征;最后引入完整-交并比(complete-IoU,CIoU)回归损失函数,提升模型检测精度.实验结果表明,在重制的中国交通标志数据集(Chinese traffic sign dataset,CTSDB)下,所提算法与YOLOv3相比,平均准确率和检测速度分别提升了4.26%和15.19%,同时相较YOLOv4以及其他算法对交通标志识别有更优的精度和速度,具有良好的鲁棒性,满足复杂场景高效实时检测.

交通标志、YOLOv3、批归一化层、空间金字塔池化、CIoU

22

TP391(计算技术、计算机技术)

国家科技重大专项2016ZX05055

2022-11-16(万方平台首次上网日期,不代表论文的发表时间)

共8页

12030-12037

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

22

2022,22(27)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn