期刊专题

10.3969/j.issn.1671-1815.2022.25.027

基于深度神经网络-近似线性网络混合模型的电力系统状态估计方法

引用
为提高电力系统实时状态估计的精度和计算效率,解决电网电压波动频发、潮流分布的不确定性剧增等问题,通过提出一种基于深度神经网络和近似线性网络模型的电力系统状态估计方法,研究了其在电网的应用.该方法将混合系统量测数据通过粒子滤波算法得到样本集,利用训练样本训练所提出的混合神经网络模型,最后将测试样本输入已建立的模型中获得系统状态的估计结果.通过IEEE118节点系统进行的负载数据仿真实验表明:基于混合神经网络模型的电力系统状态估计方法不仅能快速进行海量数据训练,还能有效避免过拟合;在实时状态估计的精度和计算效率方面,相较于高斯-牛顿法均有提高.可见所提方法在电力系统实时状态估计方面具有一定的应用价值.

粒子滤波、状态估计、深度神经网络、近似线性网络

22

TM721(输配电工程、电力网及电力系统)

国家自然科学基金51767023

2022-10-24(万方平台首次上网日期,不代表论文的发表时间)

共8页

11041-11048

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

22

2022,22(25)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn