期刊专题

10.3969/j.issn.1671-1815.2022.22.003

基于深度学习的军事目标识别算法综述

引用
目标识别作为深度学习中最受欢迎的领域之一,已广泛应用于民用的各个方面,如人脸识别、行人重识别、车牌识别、车辆识别等;而在军事应用领域,由于军事目标数据集较少,但识别要求精度高实时性强,所以还在发展阶段.首先阐述了基于深度学习的军事目标识别发展现状;然后介绍了6种目前主流的基于深度学习的军事目标识别算法(包括Mask R-CNN、GAN与深度森林、DRFCN、E-MobileNet、SSD300、YOLO)及相关网络结构、改进方法与实际应用;最后对主流方法进行总结,并探讨了未来的发展趋势.

深度学习、军事目标、高精度、实时性

22

TP391.4(计算技术、计算机技术)

陕西省重点研发计划;机电动态控制重点实验室开放课题

2022-10-11(万方平台首次上网日期,不代表论文的发表时间)

共10页

9466-9475

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

22

2022,22(22)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn