期刊专题

10.3969/j.issn.1671-1815.2022.20.046

事故接管场景下L3自动驾驶换道轨迹的评价和分类

引用
为研究L3自动驾驶事故场景下人工接管后换道轨迹的评价和分类问题,通过驾驶模拟实验采集换道轨迹数据;从舒适性、高效性、生态性、安全性4个方面选取9个评价指标;采用熵权TOPSIS(technique for order preference by similarity to an ideal solution)模型对换道轨迹进行评价并完成标签标定;用标定后的数据训练得到支持向量机(support vector machine,SVM)分类器模型,并将其应用于换道轨迹的分类中,该模型在测试集的平均准确率为79.55%,平均精确率为79.52%,平均召回率为79.51%,平均F1值为77.43%.结果表明:应用熵权TOPSIS模型得到的评分最高的换道轨迹在舒适性、高效性、生态性和安全性上综合表现优秀;SVM分类器能以较为稳定的准确率完成换道轨迹的分类.得到的最优换道轨迹可为驾驶员的换道提供指导,也可为自动驾驶车辆的轨迹遵循提供参考.

熵权TOPSIS、支持向量机(SVM)、L3级自动驾驶、换道轨迹分类

22

U491.1(交通工程与公路运输技术管理)

国家自然科学基金61876011

2022-09-02(万方平台首次上网日期,不代表论文的发表时间)

共8页

8930-8937

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

22

2022,22(20)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn