期刊专题

10.3969/j.issn.1671-1815.2022.14.004

基于机器学习混合模型的滑坡易发性评价

引用
安康市汉滨区地质环境脆弱,滑坡频发对当地居民生命财产安全造成严重威胁,针对该区域进行滑坡易发性评价是滑坡防治的有效措施.自适应提升模型和随机森林模型作为新颖的集成学习方法被应用至中外滑坡易发性评价研究中,但基于两者的混合模型在滑坡易发性中的应用研究尚未开展.为对比混合模型与单一模型的滑坡易发性评价精度,根据地质灾害详查资料圈定509处滑坡,结合研究区地质环境背景,选取高程、坡度、坡向、年均降雨量、地层岩性等13类因子进行评价.受试者工作特性曲线(receiver operating characteristic curve,ROC)结果表明,同单一模型相比,混合模型的训练集正确率和验证集预测率均为最高;混合模型的高易发区滑坡密度达到1.94,高于随机森林(1.86)和自适应提升模型(1.68);通过区内三处历史滑坡进行验证,结果显示区划结果与滑坡分布相吻合,说明自适应提升-随机森林混合模型可作为滑坡易发性评价的新方法,其区划结果可为滑坡防治与土地利用规划提供借鉴.

滑坡易发性评价、自适应提升模型、随机森林模型、混合模型

22

P694(环境地质学)

国家自然科学基金;青海省青藏高原北部地质过程与矿产资源重点实验室基金

2022-07-05(万方平台首次上网日期,不代表论文的发表时间)

共9页

5539-5547

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

22

2022,22(14)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn