期刊专题

10.3969/j.issn.1671-1815.2022.10.025

基于Stacking-Bert集成学习的中文短文本分类算法

引用
由于word2vec、Glove等静态词向量表示方法存在无法完整表示文本语义等问题,且当前主流神经网络模型在做文本分类问题时,其预测效果往往依赖于具体问题,场景适应性差,泛化能力弱.针对上述问题,提出一种多基模型框架(Stacking-Bert)的中文短文本分类方法.模型采用BERT预训练语言模型进行文本字向量表示,输出文本的深度特征信息向量,并利用TextCNN、DPCNN、TextRNN、TextRCNN等神经网络模型构建异质多基分类器,通过Stacking集成学习获取文本向量的不同特征信息表达,以提高模型的泛化能力,最后利用支持向量机(support vector machine,SVM)作为元分类器模型进行训练和预测.与word2vec-CNN、word2vec-BiLSTM、BERT-TexCNN、BERT-DPCNN、BERT-RNN、BERT-RCNN等文本分类算法在网络公开的三个中文数据集上进行对比实验,结果表明,Stacking-Bert集成学习模型的准确率、精确率、召回率和F1均为最高,能有效提升中文短文本的分类性能.

多基模型框架、BERT预训练语言模型、Stacking集成学习、短文本分类

22

TP391.1(计算技术、计算机技术)

国家自然科学基金;云南省教育厅科学研究基金

2022-05-05(万方平台首次上网日期,不代表论文的发表时间)

共6页

4033-4038

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

22

2022,22(10)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn