期刊专题

10.3969/j.issn.1671-1815.2022.06.026

基于特征量融合和支持向量机的滚动轴承故障诊断

引用
为了提高滚动轴承的故障诊断率,提出了一种经验模态分解(empirical mode decomposition,EMD)结合时域分析后使用主成分分析(principal component analysis,PCA)融合特征量的特征提取方法.首先,通过EMD分解得到前5个本征模态函数(intrinsic mode function,IMF)分量的上、下包络值矩阵的奇异值;然后,对轴承原始信号进行时域分析得到各种时域特征参数;最后对奇异值和时域特征参数使用PCA降维融合后输入到多分类支持向量机(support vector machines,SVM)中进行分类.通过实验仿真验证,融合后的特征量诊断准确率达到了98.6%,该方法能充分地提取出轴承故障特征信息,诊断效果良好.

轴承故障、经验模态分解、主成分分析、支持向量机

22

TP277(自动化技术及设备)

国家自然科学基金;湖北省自然科学基金

2022-03-30(万方平台首次上网日期,不代表论文的发表时间)

共6页

2351-2356

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

22

2022,22(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn