期刊专题

10.3969/j.issn.1671-1815.2022.04.021

基于改进卷积神经网络的变电站异物入侵识别

引用
针对无人值守变电站异物如鸟巢、风飘物入侵的情况,提出一种基于改进卷积神经网络的异物图像识别方法,利用K-means算法对异物图像尺寸聚类以设定锚框尺寸,增添上采样模块以加强特征融合,采用深度可分离卷积方式以减少计算量,同时修正损失函数以提升对重叠目标的识别能力.最后对福建某变电站的监控图像进行异物识别,准确率为91.9%,证明了方法的有效性.

变电站、异物入侵、图像识别、K-means、深度可分离卷积、CIoU

22

TM721(输配电工程、电力网及电力系统)

国家自然科学基金51977038

2022-04-18(万方平台首次上网日期,不代表论文的发表时间)

共7页

1465-1471

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

22

2022,22(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn