期刊专题

10.3969/j.issn.1671-1815.2021.33.043

基于深度残差反向传播神经网络的钢筋腐蚀检测

引用
针对小样本数据下浅层神经网络模型拟合能力不足,而加深网络层数出现网络性能退化问题,提出一种双跳跃深度残差反向传播(back propagation,BP)神经网络模型,每个残差块堆叠3个同维度网络层,在网络的一、二层和一、三层之间加入双跳跃连接,增强浅层低非线性度特征信息向深层网络的直接传递和重复利用,且在反向传播过程中避免了梯度消失,提升模型分类准确率.同时引入一阶矩估计梯度指数加权平均因子对Adam算法中影响学习率的二阶矩估计梯度进行调整,优化网络的收敛能力.将改进后的算法模型用于钢筋腐蚀样本数据训练及测试,仿真结果表明,改进后的算法模型具有更好的分类性能.

钢筋腐蚀;腐蚀检测;双跳跃残差模块;残差映射;Adam算法;神经网络

21

TU528.33(建筑材料)

2021-12-10(万方平台首次上网日期,不代表论文的发表时间)

共5页

14351-14355

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

21

2021,21(33)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn