期刊专题

10.3969/j.issn.1671-1815.2021.29.037

文本分类中基于单词表示的全局向量模型和隐含狄利克雷分布的文本表示改进方法

引用
针对文本分类中文本数据表示存在稀疏性、维度灾难、语义丢失的问题,提出一种基于单词表示的全局向量(global vectors for word representation,GloVe)模型和隐含狄利克雷分布(latent Dirichlet allocation,LDA)主题模型的文本表示改进方法.利用GloVe模型结合局部信息和全局词语共现的统计信息训练得到文本的稠密词向量,基于LDA主题模型生成文本隐含主题和相应的概率分布,构建文本向量以及基于概率信息的主题向量,并计算两者之间的相似性作为分类器的输入.实验结果表明,相比其他几种文本表示方法,改进方法在精确率、召回率和F1值上均有所提高,基于GloVe和LDA的文本表示改进方法能有效提升文本分类器的性能.

文本表示;GloVe模型;LDA主题模型;文本分类;词向量

21

TP391.1(计算技术、计算机技术)

国家自然科学基金71701019

2021-11-12(万方平台首次上网日期,不代表论文的发表时间)

共7页

12631-12637

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

21

2021,21(29)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn