期刊专题

10.3969/j.issn.1671-1815.2021.24.051

基于灰色-反向传播神经网络的江西省公路货运量预测

引用
鉴于反向传播(back propagation,BP)神经网络算法收敛速度慢、局部极小化、结构选择不一的问题,提出结合灰色关联度分析的BP神经网络方法进行公路货运量预测,提高了模型的非线性学习和泛化能力及预测精度.该预测模型以江西省统计年鉴数据为基础,首先利用灰色关联度分析确定预测目标的影响因子;然后,将关联度强的第一产业、第二产业和人均国内生产总值(gross domestic product,GDP)作为公路货运预测模型的自变量,公路货运量和自变量作为训练样本,BP神经网络模型通过正向计算传播,误差反向传播,训练神经网络;最后,该方法应用于江西省公路货运量实际预测中进行有效性验证.结果 表明:本文方法非线性拟合效果较好,具有较高的预测精度.

公路货运量预测;灰色关联度分析;反向传播(BP)神经网络

21

U121(城市交通运输)

国家自然科学基金;江西省社科规划项目青年项目;江西省交通厅规划办项目

2021-11-08(万方平台首次上网日期,不代表论文的发表时间)

共7页

10478-10484

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

21

2021,21(24)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn