期刊专题

10.3969/j.issn.1671-1815.2021.24.037

一种改进的地下车库弱纹理下智能汽车即时定位与建图算法

引用
地下车库中纯视觉的即时定位与建图(simultaneous localization and mapping,SLAM)方法无法克服光线不足和弱特征纹理两大不利因素,为此,提出一种基于VINS-Mono框架下改进的视觉惯导融合算法,把原算法中提取Harris角点的方法改进为提取灰度值陡变的像素点,并使用非线性优化方法在初始化阶段进行视觉位姿估计.后端采用滑动窗口的形式建立先验估计残差、惯性测量单元(inertial measurement unit,IMU)残差以及基于灰度值不变原理构建的视觉残差的联合残差模型,进一步提升了系统底层变量的优化效果,从而提高算法的定位准确度.通过基于EuRoc数据集的仿真实验和地下车库实际场景的实车实验,验证了所提算法的鲁棒性和精确性.

即时定位与建图(SLAM);弱特征纹理;灰度值陡变;视觉位姿估计;地下车库

21

TP273;U461.99(自动化技术及设备)

天津市新一代人工智能科技重大专项18ZXZNGX00230

2021-11-08(万方平台首次上网日期,不代表论文的发表时间)

共7页

10369-10375

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

21

2021,21(24)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn