期刊专题

10.3969/j.issn.1671-1815.2021.22.038

改进的Alexnet模型在水稻害虫图像识别中的应用

引用
深度学习技术能以端对端方式实现农作物害虫识别,克服了传统机器学习方法特征选择具有主观性以及提取特征操作繁琐等不足,但识别的准确率和鲁棒性仍有待提高.为了研究出一种快速,高效的水稻害虫识别方法,本研究以稻纵卷叶螟、三化螟、稻蝗、稻飞虱4种常见的水稻害虫为研究对象,对传统的卷积神经网络Alexnet进行优化改进.首先从自然环境以及搜索引擎上获取4种不同的水稻害虫图像,并对图像进行数量扩增和细节增强预处理.然后对传统的卷积神经网络Alexnet进行优化改进,在Alexnet模型基础上,去除原有局部响应归一化层,在每一个卷积层后加入批归一化层,并采用全局平均池化和激活函数PReLU对模型结构进行优化.结果表明:改进后的模型在害虫数据集上的识别率不低于98%,相比于原网络提升了1.96%,高于LeNet5、VGG13、VGG16等传统网络;改进后的模型的损失值稳定在0.03附近,相比于原网络降低了0.1,均低于LeNet5、VGG13、VGG16等传统网络.从实验结果来看,改进后的方法在水稻害虫分类上有较高的识别率和较好的鲁棒性,可以为农作物害虫的智能识别提供了新的思路和方法.

水稻虫害、Alexnet模型、批归一化、全局平均池化、激活函数PReLU

21

TP391.4(计算技术、计算机技术)

国家自然科学基金61562039,61762048

2021-09-22(万方平台首次上网日期,不代表论文的发表时间)

共8页

9447-9454

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

21

2021,21(22)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn