10.3969/j.issn.1671-1815.2021.21.038
基于MapReduce和改进人工蜂群算法的并行划分聚类算法
针对大数据背景下基于划分的聚类算法中存在参数寻优能力不佳、初始中心敏感、数据倾斜等问题,提出一种基于MapReduce和人工蜂群(artificial bee colony,ABC)算法的并行划分聚类(the partitioning-based clustering algorithm by using im-prove artificial bee colony based on MapReduce,MR-PBIABC)算法.首先,提出基于反向学习和聚类准则函数的初始化策略(backward learning and the clustering criterion function,BLCCF),提升人工蜂群算法搜索的解质量,并将ABC算法和人工鱼群(artificial fish colony,AFS)算法结合,提出改进人工蜂群(improve artificial bee colony,IABC)算法,通过利用AFS算法最优解能力较强的特性,来提高ABC算法的寻优能力;其次,根据改进的人工蜂群算法IABC获取初始聚类中心,提出相对熵策略(rela-tive entropy strategy,RES)衡量人工鱼间的距离,保证获得的初始聚类中心是最优人工鱼状态,从而有效避免了随机选取初始聚类中心,引起的初始中心敏感的问题;再次,设计数据均衡策略(data balancing strategy,DBS),通过动态收集节点负载并分配节点间的负载,解决了节点上数据倾斜的问题;最后,结合MapReduce计算模型,并行挖掘簇中心,生成最终聚类结果.实验结果表明,MR-PBIABC算法的聚类效果更佳,同时在大数据环境下,能有效地提高并行计算的效率.
大数据;并行化聚类;人工蜂群(ABC)算法;人工鱼群(AFS)算法;MapReduce
21
TP311(计算技术、计算机技术)
国家重点研发计划;国家自然科学基金
2022-01-07(万方平台首次上网日期,不代表论文的发表时间)
共10页
8989-8998