期刊专题

10.3969/j.issn.1671-1815.2021.21.035

基于深度学习与图像处理的废弃物分类与定位方法

引用
针对现有人工垃圾分类工作环境恶劣、自动化程度差等问题,提出基于深度学习与图像处理的废弃物分类与定位方法,为智能分拣提供理论依据.建立基于Inception模块与残差单元,搭建改进的卷积神经网络废弃物分类模型,预测目标物体种类.针对复杂环境采集到的图像,利用图像处理算法对图像降噪、阈值分割、边缘检测,有效提取目标轮廓信息,并结合质心定位算法实现废弃物准确定位.实验结果表明:该方法中废弃物分类模型预测准确率可达88.8%,基于轮廓信息的质心定位算法可以准确定位目标,具备较强的废弃物分类与定位能力.

废弃物;深度学习;卷积神经网络;图像处理;分类与定位

21

TP242(自动化技术及设备)

河北省省级科技计划;国家自然科学基金

2022-01-07(万方平台首次上网日期,不代表论文的发表时间)

共6页

8970-8975

暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

21

2021,21(21)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn