期刊专题

10.3969/j.issn.1671-1815.2021.21.031

融合专家综合知识的贝叶斯网络参数学习方法

引用
贝叶斯网络模型是经典概率图模型,目前已经广泛应用到各个领域中.在贝叶斯网络模型的参数获取方面,以往的方法往往仅依靠数据集或者专家知识.实际情况中,数据集往往存在缺失或者存在噪声,而单一专家指定的参数存在较大的主观因素,两类方法所得参数与实际存在较大偏差.提出基于D-S证据理论的专家综合知识结合小数据集的贝叶斯网络参数学习方法,克服了依靠数据集小的情况下造成的参数不准确或依靠单一专家知识主观性较强的问题.通过实验验证,提出的方法在小数据集的情况下,所获得的贝叶斯网络参数更为准确.并将提出的方法用于公安机关刑事案件线索研判,综合专家知识与小数据集获取模型参数,研判结果能够较好地反映实际情况,证明了方法的有效性.

贝叶斯网络;D-S证据理论;参数学习;刑事侦查

21

TP181(自动化基础理论)

国家重点研发计划;公安部技术研究计划项目

2022-01-07(万方平台首次上网日期,不代表论文的发表时间)

共7页

8944-8950

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

21

2021,21(21)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn