期刊专题

10.3969/j.issn.1671-1815.2021.19.035

基于迁移学习和支持向量机的白细胞分类

引用
针对人工镜检分类白细胞准确率和效率低的问题,基于深度学习和机器学习算法,提出了一种基于迁移学习和支持向量机的白细胞分类方法.首先对迁移模型进行微调训练,其次用微调训练后的迁移模型进行特征提取,然后将特征输入至神经网络和支持向量机中进行训练,最后通过神经网络和支持向量机的组合分类器对白细胞进行分类.实验结果表明,白细胞分类准确率由最初微调训练的83.26%,随着迁移模型的优化提升为90.43%,最后通过组合分类器再次提升为93.52%,可以在临床实践中帮助医生提高诊断的准确率和效率.

白细胞分类;迁移学习;神经网络;支持向量机

21

TP391.9(计算技术、计算机技术)

国家社会科学基金;黑龙江省省属高校基本科研业务费科研项目

2021-08-10(万方平台首次上网日期,不代表论文的发表时间)

共7页

8113-8119

暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

21

2021,21(19)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn