期刊专题

10.3969/j.issn.1671-1815.2021.19.034

基于稳态视觉诱发电位的脑电信号分类算法比较

引用
基于稳态视觉诱发电位(steady state visual evoked potential,SSVEP)的脑-机接口(brain computer interface,BCI)系统具有分类准确率高、用户不用长时间训练等优点而广受关注.如何高效地对SSVEP信号频率识别而实现更好的分类效果是SS-VEP-BCI的核心问题.采用滤波器组典型相关分析(filter bank canonical correlation analysis,FBCCA)与任务相关成分分析(task-related component analysis,TRCA)对SSVEP信号分类比较研究,探讨了两种方法在数据长度、子带数以及通道数对SS-VEP信号分类效果的影响.35位被试者的数据表明:在数据长度小、时间短的情况下,TRCA具有更高的分类准确率,且子带数设置为5时,分类准确率达到最大.通道数越多分类准确率越高,但是通道个数较少时,TRCA分类效果明显优于FBCCA.研究为SSVEP脑电数据有效性分析以及提高基于SSVEP的脑电信号分类准确率提供了新的思路.

稳态视觉诱发电位;滤波器组典型相关分析;任务相关成分分析;分类准确率

21

TP391(计算技术、计算机技术)

促进高校内涵发展-应急攻关项目;2019科技部高端专家引进项目;北京信息科技大学2019年教改重点资助项目;2019年北京高等教育本科教学改革创新项目;北京信息科技大学促进高校内涵发展科研平台师资补充经费

2021-08-10(万方平台首次上网日期,不代表论文的发表时间)

共7页

8106-8112

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

21

2021,21(19)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn