期刊专题

10.3969/j.issn.1671-1815.2021.19.032

基于空间分布优选初始聚类中心的改进K-均值聚类算法

引用
针对海量数据聚类过程中,经典的K-均值聚类算法对其K个初始聚类中心点的选择以及数据集噪声十分敏感的问题,提出了一种针对海量数据考虑初始聚类中心点选择的聚类算法.该算法首先采用冒泡排序法对数据集进行排序,获取数据集的各维中心值组成第一个初始聚类中心点.其次,通过计算与第一个初始聚类中心点的欧式距离,对剩余候选初始聚类中心点进行优化选择,保证所有的聚类中心点均匀地分布在数据集密度较大的空间上,以此减少聚类过程中的迭代次数和提高聚类算法效率.最后,基于UCI(University of California,Irvine)中多个数据集,进行聚类算法对比实验.结果表明,在不降低聚类效果的前提下,该聚类算法的迭代次数平均降低到50%,所需的时间降低平均达10%,由实验结果还能推出,当点集的数目越多时,该算法就能表现出越明显的聚类优势效果.

海量数据集;优化选择;数据集密度;迭代次数

21

TP301.6(计算技术、计算机技术)

国家自然科学基金青年科学基金;山西省自然科学基金

2021-08-10(万方平台首次上网日期,不代表论文的发表时间)

共7页

8094-8100

暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

21

2021,21(19)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn