10.3969/j.issn.1671-1815.2021.19.006
利用对抗性边缘学习模型生成超分辨率图像
大部分基于卷积神经网络的图像超分辨率方法都是采用端到端的模式,这类图像超分辨率方法往往存在重构图像纹理边缘模糊、高频信息缺失的问题.为了改善该问题,在SRGAN(super-resolution generation adversarial networks)的基础上提出了一种基于对抗性图像边缘学习的深层网络模型,将图像边缘信息得到充分利用,来引导超分网络生成更加真实的高分辨率图像.该网络模型由两个生成对抗网络所组成,首先利用一个生成对抗网络来生成低分辨率图像所对应的高分辨率边缘特征图,然后再用高分辨率边缘特征图来约束和引导第二个生成对抗网络,使之重构出来的高分辨率图像纹理边缘更加清晰,更好地恢复图像边缘的高频细节.在Set5、Set14、BSD100、Urban100和Manga109基准测试集上的实验结果表明该算法重构出的高分辨率图像更加接近真实的图像,在峰值信噪比、结构相似度和感知指标上都有不错的表现.
超分辨率;卷积神经网络;生成对抗网络;边缘特征学习
21
O29(应用数学)
2021-08-10(万方平台首次上网日期,不代表论文的发表时间)
共8页
7891-7898