期刊专题

10.3969/j.issn.1671-1815.2021.16.038

基于改进的更快的卷积神经网络特征区域的淡水鱼鱼鳃切口点定位

引用
为了提高鱼产品加工过程中鱼鳃切口点定位的准确度,采用改进的更快的卷积神经网络特征区域(faster convolution-al neural network feature region,Faster RCNN)对淡水鱼的鱼鳃部位进行检测和定位.首先,为了增强主干网络VGG16的特征提取能力,加入批归一化(batch normalization,BN)层对其进行结构优化,提高了网络识别的准确率.其次,当物体处于预设的交叉阈值范围时,非最大值抑制(non-maximum suppression,NMS)算法存在目标漏检的问题.采用Soft-NMS算法替代NMS算法,增强了目标检测的性能.通过在淡水鱼数据集进行的实验结果表明,改进的Faster RCNN网络对鱼鳃切口定位准确率达到了96%,较未改进网络提高了6%,为后续生产线中鱼鳃的精准切割奠定了基础.

目标检测、鱼鳃切口定位、更快的卷积神经网络特征区域(Faster RCNN)、Soft-NMS

21

TS254.8(食品工业)

天津市科技支撑计划;天津市科技支撑计划;天津市科技支撑计划

2021-07-20(万方平台首次上网日期,不代表论文的发表时间)

共7页

6794-6800

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

21

2021,21(16)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn