期刊专题

10.3969/j.issn.1671-1815.2021.14.025

基于误差分级迭代法的基坑变形预测

引用
BP(back propagation)神经网络算法在变形预测方面存在收敛速度慢、学习效率低、容易陷入局部最小值等问题,直接影响预测结果的精准性,利用误差分级迭代法优化的神经网络能够更好地降低误差,提升预测性能.通过对比分析误差分级迭代法与BP神经网络的优势,建立误差分级迭代法模型并编制误差分级迭代法变形预测程序.采用基坑工程实测数据,经过误差分级迭代法优化后神经网络的最大误差为0.96%,与径向基神经网络预测精度相比提高3.5%,利用误差分级迭代法预测基坑变形结果其精准性较高,具有一定的实用价值.

基坑变形;误差分级迭代;BP神经网络;仿真;优化算法;径向基;预测

21

TP183;TP391.9(自动化基础理论)

河北省科技厅重点研发计划20373802D

2021-08-06(万方平台首次上网日期,不代表论文的发表时间)

共6页

5822-5827

暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

21

2021,21(14)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn