期刊专题

10.3969/j.issn.1671-1815.2021.12.038

基于正弦图分区修复的稀疏角度CT重建算法

引用
针对稀疏投影CT重建图像中的条形伪影问题,提出一种稀疏表示与低秩矩阵填充相结合的正弦图分区修复方法.首先,将正弦图子块依据灰度熵大小分为两类;然后,采用字典学习算法修复边界区域的正弦图子块,为了保留正弦图的内部结构,设计一种联合修复模型用于内部子块的修复,将正弦图的低秩特性融入稀疏表示模型中,以便引入非局部信息;最后,组成完整的正弦图并经滤波反投影(FBP)重建获得最终图像.实验结果表明,与经典算法相比,该算法在投影域与图像域皆有较优表现,能够较好地修复正弦图的结构,明显改善稀疏重建图像中的条形伪影及结构模糊问题.

稀疏角度投影、字典学习、低秩矩阵、正弦图修复、灰度熵

21

TP391.41(计算技术、计算机技术)

国家自然科学基金;国家自然科学基金;山西省自然科学基金;国家重点实验室开放基金;中北大学青年学术带头人项目;国家自然科学基金

2021-06-15(万方平台首次上网日期,不代表论文的发表时间)

共7页

5011-5017

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

21

2021,21(12)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn