期刊专题

10.3969/j.issn.1671-1815.2021.07.026

基于深度神经网络的强对流天气识别算法

引用
短时强降水、大风等强对流天气危害巨大,对其进行自动识别存在相当大的技术困难.提出一种基于深度神经网络的强对流天气智能识别模型,以雷达回波图像和表征回波移动路径的光流图像作为输入,通过神经网络的自学习,寻求雷达图像与"是否发生强对流天气"之间的函数映射关系;并运用数据集增强、代价函数优化和模型泛化性能优化等技术,解决了训练样本的不均衡问题,避免了模型训练过程陷入局部极值的问题.实验结果表明,该方法对强对流天气识别的准确率达到96%,误报率低于60%.该方法也适用于对下击暴流等灾害性天气的自动识别.

深度神经网络、强对流天气、灾害性天气、短时强降水、大风、深度学习、数据增强、图像识别

21

TP273+.2(自动化技术及设备)

国家自然科学基金;江苏高校哲学社会科学研究基金;南京信息工程大学2020年度地球科学虚拟仿真实验教学课程建设项目

2021-05-11(万方平台首次上网日期,不代表论文的发表时间)

共10页

2737-2746

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

21

2021,21(7)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn