期刊专题

10.3969/j.issn.1671-1815.2021.06.036

基于级联卷积神经网络的番茄果实目标检测

引用
为了使采摘机器人在收获番茄时更加精准地识别目标果实,采用改进后的Cascade RCNN网络对温室内的番茄果实进行目标检测.将Cascade RCNN网络中的非极大值抑制算法替换为Soft-NMS(soft non-maximum suppression)算法,采用适合番茄形状的锚框,增强网络对重叠果实的识别能力,与原Cascade RCNN网络相比,目标识别的准确率提高了近2%,在识别番茄果实的同时,该网络对番茄的成熟度进行了简单分类.为进一步验证网络性能,将改进网络与经典的Faster RCNN网络和YOLOv3网络进行对比.实验结果表明,改进网络能够准确地识别出番茄果实,并对成熟番茄与未成熟番茄做出区分.该方法可为温室内番茄果实的采摘提供技术支持.

深度学习、卷积神经网络、目标检测、番茄果实、Cascade RCNN

21

TP391.41(计算技术、计算机技术)

天津市科技支撑计划17ZXYENC00080,18YFZCNC01120,15ZXZNGX00290

2021-04-15(万方平台首次上网日期,不代表论文的发表时间)

共5页

2387-2391

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

21

2021,21(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn