期刊专题

10.3969/j.issn.1671-1815.2021.06.035

分组训练卷积字典的图像去噪算法

引用
卷积稀疏编码(convolutional sparse coding,CSC)这一全局模型因字典的特殊结构而受到广泛关注,其中卷积字典学习算法(slice-based dictionary learning,S-BCSC)是最为有效的CSC模型优化算法.虽然S-BCSC算法非常有效,但算法在应用中对整幅图像只使用一个固定大小的字典,然而这并不利于图像信息的准确描述.为克服这一缺陷,讨论如何根据图像大小确定卷积字典大小,结合稀疏表示字典学习算法,提出分组训练卷积字典的图像去噪算法.新算法首先将过冗余图像块按照平滑、纹理、边缘分为三类;然后为每一类分别确定所要训练的卷积字典大小;最后依据S-BCSC算法完成字典学习以及图像去噪过程.从实验结果可以看出,所提算法在图像质量、清晰度上相比原S-BCSC算法都有所提升.

稀疏表示、稀疏编码、字典学习、卷积字典学习、卷积稀疏编码

21

TP391.41;O29(计算技术、计算机技术)

2021-04-15(万方平台首次上网日期,不代表论文的发表时间)

共8页

2379-2386

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

21

2021,21(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn