期刊专题

基于神经网络的切换非线性系统辨识

引用
提出了一种基于神经网络的多个Hammerstein-Wiener模型构成切换非线性系统的在线辨识方法.首先,通过误差逆传播(back propagation,BP)神经网络建立切换非线性系统的切换规律预测模型;其次,提出折息递推辨识算法对各个非线性子系统的参数进行辨识.利用关键项分离法对乘积项进行分离,得到各个子系统的参数估计值.最后通过切换非线性系统辨识实例,并与其他方法进行比较,验证了所提方法的有效性.结果 表明:提出的方法在辨识切换非线性系统方面具有更高的准确率和可靠性.

切换非线性系统、Hammerstein-Wiener模型、BP神经网络、折息递推辨识算法、关键项分离法

21

TP273.22(自动化技术及设备)

国家自然科学基金61863034

2021-05-07(万方平台首次上网日期,不代表论文的发表时间)

共8页

1914-1921

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

21

2021,21(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn