期刊专题

基于改进灰狼算法优化自适应相似日选取的小水电短期预测

引用
针对小水电机组出力预测问题,提出一种基于改进灰狼算法优化自适应相似日选取的小水电预测方法.首先根据小水电的出力规律采用阴历来划分负荷数据,考虑到各因素影响小水电出力的程度是变化的,采用自适应相似日选取方法,并引入改进的灰狼算法来优化各影响因子权重.将筛选出来的相似日样本输入径向基函数(radial basis function,RBF)、反向传播(back propagation,BP)网络这两种单一模型分别进行小水电机组出力预测,并将两个模型的预测结果输入经灰狼算法优化的广义回归神经网络进行非线性组合预测.对某地区进行算例分析,模型相较于单一的BP、RBF和未优化的广义回归神经网络(general regression neural network,GRNN)组合预测模型,平均绝对误差分别降低了3.28%、1.73%和0.29%,验证了模型的有效性.

小水电机组出力、自适应相似日、改进灰狼算法、广义回归神经网络、组合预测

21

TM612(发电、发电厂)

国家自然科学基金61603212

2021-05-07(万方平台首次上网日期,不代表论文的发表时间)

共8页

1832-1839

相关文献
评论
暂无封面信息
查看本期封面目录

科学技术与工程

1671-1815

11-4688/T

21

2021,21(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn